## QUEEN'S MBA CONSULTING PROJECT: DESLAURIER CUSTOM CABINETS

## **KIS SHOWCASE: APRIL 12/2011**







- 1. Assessment of Deslaurier's current operations
- 2. Recommendations
- 3. Key Learnings



## **Project Overview**

- QMBA team (7 students)
- Operations Course/ Monieson Centre Field Trip Project
  Assessment of DesLaurier's manufacturing plant (Renfrew)
  Applying course concepts to improve plant operations
- Deliverable: Provide recommendations to improve operations in the finishing area.

## **Plant Layout**



## **Assessment of Operations**

- RPA (Rapid Plant Assessment) of the Finishing area
  - > Assess operations by asking pre-defined questions.

Total plant score: 68 (Above average)



### **RPA Analysis – Finishing Area**

### Scheduling System

- Push system
- Production schedule chart

Visual Management System

 No visual indicators (unlike other parts of the plant)

## Teamwork and Motivation

- Input from front line workers.
- Leadership and decision making skills

## **Process Flow – Finishing Area**



## **Problem: Visual Management System**

Jobs entering finishing area not synchronized with Seal/Topcoat machine:

- No pull-based visual system
- CCR (Capacity Constrained Resource)
  - Buffer inventory piles up
  - Imbalance downstream



## **Problem: Scheduling / Leadership Systems**

Loading operator forced to decide which batch to process
 Systematic processes may break down
 Triple threat



# Options to Improve Efficiency in the Finishing area

• Increase the number of operators at the seal/topcoat machine.



Design a 'pull' production system in the finishing area

Empower Sealer/topcoat operator to decide.

Split up Sealer/topcoat into two distinct processes.

## **Option 2: Design a 'Pull' production system**

### **Challenge:**

- Feedback loop: Seal/topcoat station is a non-linear process.
- Pull based systems not designed to receive simultaneous requests:
  - Kanban Pull based visual scheduling (LEAN/JIT)
  - Drum-buffer rope maintaining buffer by stations (TQM)



## **Option 2: Design a 'Pull' production system**

### Implementation:

- 1. Incorporate three Kanbans in the finishing area
- Kanban #1 Seal/topcoat operator sends pull request upstream
- Kanban #4 Seal request from Sanding station
- Kanban #5 Topcoat request from finishing area



## **Option 2: Design a 'Pull' production system**

### Implementation (cont'd):

- 2. Train operators to initiate pull requests
- 3. Establish a set of operational rules for the Topcoat/seal operator.

| Kanban –<br>Top Coat | Kanban –<br>Scuff/Sander | Action by<br>TC/Seal |
|----------------------|--------------------------|----------------------|
| On                   | On                       | TopCoat              |
| On                   | Off                      | TopCoat              |
| Off                  | On                       | Seal                 |
| Off                  | Off                      | Nothing              |
|                      |                          |                      |

## Key Learnings and take aways...

- Every business is unique
- Square Peg in a round hole Six Sigma, LEAN
- INNOVATION IS KEY

Incorporating principles from more than one practice



## THANK YOU - DESLAURIER AND THE MONIESON CENTRE

## aneesh.datta@business.queensu.ca